Clinical and Economic Benefits

T.Ox can be used during various stages of tissue transfer surgery to positively affect clinical and financial outcomes.

- Reduces take-backs when used for intraoperative flap assessment.1
- Potential reduction in early take-backs avoids cost of OR turnover expense and supplies.1
- Improvement in flap loss rate reduces expenses associated with failed flaps.
- Lowers hospital costs by allowing patients with continuous flap monitoring to recover on a standard surgical floor or through earlier transfer to step down unit.1,4
- Saves staff time via remote access to monitoring and alarm data.

Patient Benefits

- Non-invasive sensor is safer for the patient as there’s no need to remove an invasive implanted device.
- Reduces patient discomfort caused by repeated post-op clinical examination of the flap.
- Patients say they love the T.Ox system because it gives them ownership in their care.
- Physicians have reported that patients feel more engaged in their own recovery and are comforted by having the monitor by their bedside.
- Patients monitored with T.Ox can move to the more familiar environment of a standard floor sooner.

Clinically Validated

- In a study of 208 monitored flaps, five patients exhibited complications that were predicted by T.Ox before clinically evident.1
- Tissue Oxygen Saturation and its drop rate can be combined to indicate possible hypoxia in a flap.1
- All flaps with StO2 less than or equal to 30% and a drop rate greater than or equal to 20% per hour, both sustained more than 30 minutes, were flaps with complications.1

How T.Ox Works

- Non-invasive T.Ox Sensors are placed on the flap during surgery.
- Lasers shine near-infrared light into the tissue, detect and adjust for reflection and absorption.
- Automatically compensates for skin pigmentation.
- Measures red cells in all vascular structures under the sensor: arteries, veins and capillaries.
- Signal Quality lets you know sensor is placed correctly.

3 Lohman, Robert; Djohan, Risal; Langevin, Claude‐Jean; Bernard, Steven; Alam, Daniel; Siemionow M. Methods of Free Flap Monitoring in a Non‐Specialized Unit. Presented at the American Society for Reconstructive Microsurgery, January 2009.
T.Ox Tissue Oximetry

The T.Ox System uses near-infrared spectroscopy to provide continuous, real-time tissue oxygen saturation (StO₂) measurements that facilitate identification of flap complications and their causes before clinically evident.¹

The T.Ox System provides clinicians with alerts in two key ways:

1. **Number**: real time StO₂ reading that is updated every four seconds.*

2. **Trending Graphs**: provide insight as to what type of problem exists, its onset, and its duration.

Two Different Sensors for Versatility

- T.Ox SP with Adhesive Pad
- T.Ox SS with Silicone Surround

Objective Data: StO₂

- **Venous Congestion**: Local venous outflow obstruction can allow a region of a flap to inflate with fresh arterial blood leading to a transient rise in local oxygen saturation. The StO₂ will then fall to the extent to which the obstruction impairs perfusion, or to the extent to which the flap metabolizes the oxygen over subsequent hours.

- **Arterial Obstruction**: Arterial obstruction can lead to a drop in StO₂ over a period of minutes or hours, depending on the extent of the occlusion.

Remote Access...Anywhere, Anytime

- Wi-Fi transmitter lets you view from any web browser
- Adds convenience and saves time
- Early identification of flap complications improves patient outcomes

Post-Op Monitoring

- Early warning of flap perfusion loss.²
- Identify complications before clinically evident.

Intra-Op Assessment

- Identify tissue with best chance of survival.
- Assists with design, harvest and inset of flaps.²

Flap Monitoring Starts in the OR

- Early warning of flap perfusion loss.²
- Identify complications before clinically evident.
The T.Ox System uses near-infrared spectroscopy to provide continuous, real-time tissue oxygen saturation (StO₂) measurements that facilitate identification of flap complications and their causes before clinically evident.¹

The T.Ox System provides clinicians with alerts in two key ways:

1. **Number**: real-time StO₂ reading that is updated every four seconds.*

2. **Trending Graphs**: provide insight as to what type of problem exists, its onset, and its duration.

Venous Congestion

Local venous outflow obstruction can allow a region of a flap to inflate with fresh arterial blood leading to a transient rise in local oxygen saturation. The StO₂ will then fall to the extent to which the obstruction impairs perfusion, or to the extent to which the flap metabolizes the oxygen over subsequent hours.

Arterial Obstruction

Arterial obstruction can lead to a drop in StO₂ over a period of minutes or hours, depending on the extent of the occlusion.

Remote Access...Anywhere, Anytime

- Wi-Fi transmitter lets you view from any web browser
- Adds convenience and saves time
- Early identification of flap complications improves patient outcomes

Post-Op Monitoring

- Early warning of flap perfusion loss.
- Identify complications before clinically evident.

Objective Data: StO₂

- **85**
- **36**

Flap Monitoring Starts in the OR

Last / First Check of Anastomosis

Intra-Op Assessment

- Identify tissue with best chance of survival.
- Assists with design, harvest and inset of flaps.

Single Channel mode updates every 4 seconds, in Dual Channel mode each channel updates every 8 seconds.
Clinical and Economic Benefits

T.Ox can be used during various stages of tissue transfer surgery to positively affect clinical and financial outcomes:

- Reduces take-backs when used for intraoperative flap assessment.1
- Potential reduction in early take-backs avoids cost of OR turnover expense and supplies.1
- Improvement in flap loss rate reduces expenses associated with failed flaps.
- Lowers hospital costs by allowing patients with continuous flap monitoring to recover on a standard surgical floor or through earlier transfer to step down unit.2,3
- Saves staff time via remote access to monitoring and alarm data.

Patient Benefits

- Non-invasive sensor is safer for the patient as there’s no need to remove an invasive implanted device.
- Reduces patient discomfort caused by repeated post-op clinical examination of the flap.
- Patients say they love the T.Ox system because it gives them ownership in their care.
- Physicians have reported that patients feel more engaged in their own recovery and are comforted by having the monitor by their bedside.
- Patients monitored with T.Ox can move to the more familiar environment of a standard floor sooner.

Clinically Validated

- In a study of 208 monitored flaps, five patients exhibited complications that were predicted by T.Ox before clinically evident.1
- Tissue Oxygen Saturation and its drop rate can be combined to indicate possible hypoxia in a flap.1
- All flaps with StO2 less than or equal to 30% and a drop rate greater than or equal to 20% per hour, both sustained more than 30 minutes, were flaps with complications.1

How T.Ox Works

- Non-invasive T.Ox Sensors are placed on the flap during surgery.
- Lasers shine near-infrared light into the tissue, detect and adjust for reflection and absorption.
- Automatically compensates for skin pigmentation.
- Measures red cells in all vascular structures under the sensor: arteries, veins and capillaries.
- Signal Quality lets you know sensor is placed correctly.

3 Lohman, Robert; Djohan, Risal; Langevin, Claude–Jean; Bernard, Steven; Alam, Daniel; Siemionow M. Methods of Free Flap Monitoring in a Non-Specialized Unit. Presented at the American Society for Reconstructive Microsurgery, January 2009.